

National Wadeable Streams Assessment

Susan Holdsworth
EPA Office of Water
Steve Paulsen
EPA Office of Research and Development

Recent Critiques of Water Monitoring Programs

- General Accounting Office, 2000
 - EPA and States cannot make statistically valid inferences about water quality and lack data to support management decisions
- National Research Council, 2001
 - A uniform, consistent approach to ambient monitoring and data collection is necessary to support core water quality programs
- National Academy of Public Administration, 2002
 - Improved water quality monitoring information is necessary to help states make more effective use of limited resources
- Heinz Center Report, 2002
 - There is inadequate data for national reporting on fresh water, coastal and ocean water quality indicators.
- Draft Report on the Environment, 2003
 - No current way to develop a national picture of water quality

Current State of Water Quality Monitoring

- Current monitoring and assessment approaches are limited --
 - Most focus on targeted monitoring
 - Assess limited percentage state waters and water body types (19% rivers and streams, 43% lakes, 36% estuaries, 4% wetlands)
 - Generally not comparable across states
 - Difficulty demonstrating effectiveness of program actions and allocation of resources

Vision for Future

- We have adequate monitoring data to assess the condition of waters of the U.S. and make sound management decisions
 - By maximizing partnerships, and
 - Using best combination of monitoring tools to answer key questions at national, regional, state and local scales
- We can effectively target water quality actions to maximize benefits and save costs.

Strategy for Achieving the Vision

- Strengthen state programs
 - Invest in state/tribal programs through grants and technical support
- Use multiple monitoring tools
 - Seek and transfer tools to support full range of decisions for all water body types
- Expand accessibility and use of data
 - Encourage comparability of methods and reporting
 - Improve communication of water quality results
- Promote Partnerships
 - Collaborate to maximize use of monitoring resources

Strengthen State Programs

- \$100M shortfall for state monitoring
- Comprehensive state strategies by FY05
- Seek and transfer examples of streamlining and efficiency
 - So. California partnerships to redesign monitoring to address broader range of management needs
 - Indiana, Florida Watershed Monitoring Program uses combination of probability and targeted monitoring
 - National Coastal Assessment collaboration among EPA and coastal states to assess condition of 100% of coastline with random sample

Promote the Use of Multiple Monitoring Tools

- Predictive tools
- Probability-based (randomized) designs
- Targeted monitoring designs
- Innovative approaches

...to support full range of decision objectives for all water body types at multiple scales.

National Streams Assessment Basic Framework

- Randomly generated sampling locations
- Standard Operating Procedures (SOPs) adapted from EMAP-Western Streams
 - Benthic macroinvertebrate
 - Physical habitat
 - Ambient chemistry
- Strict QA/QC
- Sampling in 2004 to compliment Western data
- Report in December, 2005

Site Selection

- RF3/NHD 1:100,000 scale network
- Stream orders 1-4/5
- Probability design with Level II
 Ecoregion, EPA Region, and 4-digit HUC reporting capability
- 500 primary sites distributed over 10 ecoregions (complement 600 sites surveyed by Western states)

Wadeable Stream Sites: Regions 1-7

Site Evaluation

- Standardized forms and protocols
- Office Evaluation
 - Map/Aerial Photo Information
 - Phone/letter Contact
- Field Evaluation
 - Prior to field sampling if office evaluation inconclusive
 - Final determination of target/non-target status occurs during scheduled field sampling visit

Standard Field Documents

- QAPP
- SOPs
- Site verification packet
- Field packets
- Chain of Custody

Key Components

- Benthic Macroinvertebrate collections
- Physical Habitat assessment
- In situ Chemical measurements
- Water samples for selected chemical parameters
- Comprehensive Quality Assurance Program
- Standardized data management system
- Analysis plan for assessment and reports

Benthic Macroinvertebrates

- Reach-wide sampling (Length = 40x width)
- D-Net, 500µm mesh
- 30-second sample per 1 ft²
- Left (25%)/Center (50%)/Right (75%) alternating sampling scheme
- 95% ethanol preservative

Benthic Macroinvertebrates

Stream Flow

TRANSECT SAMPLES (1/transect)

Sampling point of each transect (25%, 50%, 75%) selected systematically after random start

Modified kick net (500 µm mesh) 1 ft² quadrat sampled for 30-seconds

COMPOSITE REACHWIDE SAMPLE

SEIVING

- •500 µm mesh
- •Remove as much debris and fine sediment as possible

COMPOSITE INDEX SAMPLE

- •500-mL or 1-L aliquots
- •Fill no more than 50% full with sample
- Preserve with 95% ethanol to final concentration of 70%

Physical Habitat Assessment

- Five components of quantitative survey
 - Thalweg profile
 - Woody debris tally
 - Channel and Riparian characterization
 - Assessment of channel constraint, debris torrents, and major floods
 - Discharge
- Visual-based assessment
 - 14 metrics of RBPs

Quality Assurance Program

- Detailed Quality Control procedures
- Field and laboratory audits
- Chain-of-Custody procedures
- Qualified laboratory for chemical analyses and biological sample sorting
- Trained taxonomists using the most up-todate and widely accepted technical literature
- Rigorous data entry QC

Data Management

- Generate raw data files
 - Input field data sheets
 - Link lab analytical data, including QA/QC
 - Error checks
- Perform validation and verification
- Transfer to states, grantees and STORET

Methods Comparability Analysis

- Use multiple field protocols at sites
- Replicate sampling at some sites
- Strict QA/QC of all aspects of protocol
- Analyze key endpoints
- Calculate precision (RPD), similarity, and sensitivity (DE)
- Incorporate into report

Data Analysis and Interpretation Options

- Descriptive statistics on condition at ecoregion II, EPA region, national scale
 - Basic analysis of data sets designed to describe populations
 - Describe central tendency (mean, median) and variation
- Interpretation of data in context of good, fair, poor
 - Define expected/reference condition to use as threshold or benchmark for evaluation
 - Examine impact of methodological differences

Data Analysis and Interpretation

Example from Mid-Atlantic

Macroinvertebrate Results

Number of EPT Taxa

Physical Habitat Assessment Detail on Quantitative Measures

Thalweg Profile

- Measure maximum depth, classify habitat and pool-forming features, check presence of backwaters, side channels, and deposits of soft, small sediment at 10-15 equally spaced intervals between each of 11 cross-sections (100-150 total measurements)
- Measure wetted width and evaluate substrate size classes at 11 crosssection transects and midway between them (21 total width measurements and substrate crosssections)

Woody Debris Tally

 Between each of the channel crosssections, count large woody debris numbers within and above the bankfull channel according to length and diameter classes (10 separate tallies)

Channel & Riparian Characterization

Measure

- Cross section dimensions
- Bank height
- Undercut distance
- Bank angle
- Slope & compass bearing (backsight)
- Riparian canopy density (densiometer)

Observe & Record

- Presence & proximity of human disturbances and large trees
- Presence of alien plants

Visually estimate

- Substrate class size & embeddedness
- Areal cover class & type (e.g., woody trees) of riparian vegetation in
 - Canopy
 - Mid-Layer
 - Ground Cover
- Areal cover class of fish concealment features, aquatic macrophytes, and filamentous algae

Assessment of Channel Constraint, Debris Torrents, & Major Floods

- Identify features causing channel constraint
- Estimate the percentage of constrained channel margin for the entire reach
- Estimate the ratio of bankfull/valley width
- Check evidence of recent major floods & debris torrent scour or deposition

Discharge

- In medium & large streams measure water depth & velocity at 0.6 depth at 15-20 equally spaced intervals across one carefully chosen channel cross-section
- In small streams, measure discharge by timing the filling of a bucket or timing the passage of a neutral buoyant object through an estimated cross-sectional area

Water Chemistry

- In situ
 - Conductivity
 - Dissolved oxygen
 - Temperature
 - pH

- Grab Samples
 - Total N
 - Total P
 - Nitrate-Nitrite
 - Sulfate
 - Chloride
 - Ammonia
 - ANC
 - DOC

RBP Visual-based Assessment

 Seems like we should add a slide listing these too?